ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



Задача 78222

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Прислать комментарий     Решение


Задача 79469

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 7,8,9

Длины a, b, c, d четырёх отрезков удовлетворяют неравенствам 0 < abc < dd < a + b + c. Можно ли из этих отрезков сложить трапецию?
Прислать комментарий     Решение


Задача 107755

Темы:   [ Неравенство треугольника (прочее) ]
[ Теория игр (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 7,8,9

У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?
Прислать комментарий     Решение


Задача 54101

Темы:   [ Неравенство треугольника (прочее) ]
[ Параллелограммы ]
Сложность: 4-
Классы: 8,9

Докажите, что в параллелограмме против большего угла лежит большая диагональ.

Прислать комментарий     Решение


Задача 54791

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

В вершине A единичного квадрата ABCD сидит муравей. Ему надо добраться до точки C, где находится вход в муравейник. Точки A и C разделяет вертикальная стена, имеющая вид равнобедренного прямоугольного треугольника с гипотенузой BD. Найдите длину кратчайшего пути, который надо преодолеть муравью, чтобы попасть в муравейник.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .