Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 144]
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.
В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
а) Докажите неравенство P ≥ 2BD.
б) В каких случаях это неравенство превращается в равенство?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма будет всегда меньше 2.
|
|
Сложность: 3+ Классы: 9,10,11
|
Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?
|
|
Сложность: 3+ Классы: 10,11
|
Дан
ABC и точка
D внутри него, причем
AC -
DA > 1 и
BC -
BD > 1. Берётся
произвольная точка
E внутри отрезка
AB. Доказать, что
EC -
ED > 1.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 144]