ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



Задача 35507

Темы:   [ Неравенство треугольника (прочее) ]
[ Системы точек ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.

Прислать комментарий     Решение

Задача 53136

Темы:   [ Неравенство треугольника (прочее) ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

Прислать комментарий     Решение

Задача 57328

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Докажите, что если длины сторон треугольника связаны неравенством  a2 + b2 > 5c2, то c — длина наименьшей стороны.
Прислать комментарий     Решение


Задача 57329

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.
Прислать комментарий     Решение


Задача 78154

Темы:   [ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
Сложность: 3
Классы: 9,10

Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .