Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 152]
|
|
Сложность: 4 Классы: 10,11
|
Середины противоположных рёбер тетраэдра соединены. Доказать, что
сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Точка
I – центр вписанной окружности треугольника
ABC. Внутри треугольника выбрана точка
P такая, что
ÐPBA + ÐPCA = ÐPBC + ÐPCB.
Докажите, что
AP ≥
AI, причём равенство выполняется тогда и только тогда, когда
P совпадает с
I.
Точка
M лежит на стороне
BC треугольника
ABC . Известно, что радиус окружности,
вписанной в треугольник
ABM , в два раза больше радиуса окружности, вписанной в
треугольник
ACM . Может ли отрезок
AM оказаться медианой треугольника
ABC ?
У двух треугольников равны наибольшие стороны и равны наименьшие углы.
Строится новый треугольник со сторонами, равными суммам соответствующих сторон
данных треугольников
(складываются наибольшие стороны двух треугольников,
средние по длине стороны и наименьшие стороны).
Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Дан вписанный четырёхугольник
ABCD , в котором
BC=CD .
Точка
E — середина диагонали
AC . Докажите, что
BE+DE AC .
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 152]