ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 484]      



Задача 53774

Темы:   [ Трапеции (прочее) ]
[ Четырехугольники (построения) ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

Прислать комментарий     Решение

Задача 53884

Темы:   [ Замечательное свойство трапеции ]
[ Четырехугольники (построения) ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Прислать комментарий     Решение

Задача 54595

Темы:   [ Касающиеся окружности ]
[ Построения ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

Даны три точки A, B, C. С помощью циркуля и линейки постройте три окружности, попарно касающиеся в этих точках.

Прислать комментарий     Решение

Задача 54619

Темы:   [ Построение треугольников по различным элементам ]
[ Подобные треугольники и гомотетия (построения) ]
Сложность: 3+
Классы: 8,9

Постройте прямоугольный треугольник по катету и отношению второго катета к гипотенузе.

Прислать комментарий     Решение


Задача 54660

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Окружности (построения) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла такую точку C, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .