ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]      



Задача 79384

Темы:   [ Целочисленные решетки (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10

На прямоугольном листе клетчатой бумаги размером m×n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?

Прислать комментарий     Решение

Задача 32894

Темы:   [ Целочисленные решетки (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Ши Вэй Ли

Разрежьте фигуру, изображённую на рисунке, на две равные части.

Прислать комментарий     Решение

Задача 53770

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9

Точки A1 и C1 расположены на сторонах BC и AB треугольника ABC. Отрезки AA1 и CC1 пересекаются в точке M.
В каком отношении прямая BM делит сторону AC, если  AC1 : C1B = 2 : 3  и  BA1 : A1C = 1 : 2?

Прислать комментарий     Решение

Задача 64698

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Свойства симметрий и осей симметрии ]
[ Композиции симметрий ]
[ Композиции движений ]
Сложность: 4-
Классы: 8,9,10

а) Сколько осей симметрии может иметь клетчатый многоугольник, то есть многоугольник, стороны которого лежат на линиях листа бумаги в клетку?

б) Сколько осей симметрии может иметь клетчатый многогранник, то есть многогранник, составленный из одинаковых кубиков, примыкающих друг к другу гранями?

Прислать комментарий     Решение

Задача 78514

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются узлами, звеном" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .