Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 122]
|
|
Сложность: 3 Классы: 10,11
|
В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дана квадратная сетка на плоскости и треугольник с
вершинами в узлах сетки. Докажите, что тангенс любого угла в
треугольнике — число рациональное.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что на окружности с центром в точке лежит не более одной точки целочисленной
решетки.
Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.
|
|
Сложность: 3+ Классы: 6,7,8
|
Есть 40 одинаковых шнуров. Если поджечь любой шнур с одной стороны, он сгорает, а если с другой – не горит. Вася раскладывает шнуры в виде квадрата (см. рисунок, каждый шнур – сторона клетки). Затем Петя расставляет 12 запалов. Сможет ли Вася разложить шнуры так, что Пете не удастся сжечь все шнуры?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 122]