Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 122]
|
|
Сложность: 3+ Классы: 6,7,8
|
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.
План города имеет схему, изображенную на рисунке.
На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.
Докажите, что каждое число a в треугольнике Паскаля равно
а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.
Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая ломаная без самопересечений. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченной ею части доски общая площадь чёрных кусков равна общей площади белых кусков.
[Муха на решётке]
|
|
Сложность: 3+ Классы: 9,10,11
|
Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент:
а) муха окажется в точке (8, 10);
б) муха окажется в точке (8, 10), по дороге пройдя по отрезку, соединяющему точки (5,6) и (6. 6);
в) муха окажется в точке (8, 10), пройдя внутри круга радиуса 3 с центром в точке (4, 5).
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 122]