ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]      



Задача 65326

Темы:   [ Дискретное распределение ]
[ Целочисленные решетки (прочее) ]
Сложность: 4
Классы: 9,10,11

Рассеянный Ученый в своей лаборатории вывел одноклеточный организм, который с вероятностью 0,6 делится на два таких же организма, а с вероятностью 0,4 погибает, не оставив потомства. Найдите вероятность того, что через некоторое время у Рассеянного Ученого не останется ни одного такого организма.

Прислать комментарий     Решение

Задача 109192

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Обёрткой плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной     – обёртки.
  а) Докажите, что есть и другие обёртки.
  б) Докажите, что обёрток бесконечно много.

Прислать комментарий     Решение

Задача 109895

Темы:   [ Теория игр (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 7,8,9

Автор: Дужин Ф.С.



В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
Прислать комментарий     Решение

Задача 110065

Темы:   [ Целочисленные решетки (прочее) ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Прислать комментарий     Решение

Задача 32027

Темы:   [ Малые шевеления ]
[ Целочисленные решетки (прочее) ]
[ Композиции поворотов ]
[ Поворот на $90^\circ$ ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10

В каждый узел бесконечной клетчатой бумаги воткнута вертикальная булавка. Иголка длины l лежит на бумаге параллельно линиям сетки. При каких l иголку можно повернуть на 90°, не выводя из плоскости бумаги? Иголку разрешается как угодно двигать по плоскости, но так, чтобы она проходила между булавками; толщиной булавок и иголки пренебречь.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .