ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



Задача 102259

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите периметр четырёхугольника ABMN, если известно, что  AB = 5,  MN = 3.

Прислать комментарий     Решение

Задача 102260

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите длину отрезка MN, если известны периметр  P  = 14  четырёхугольника ABMN и длина основания  AB = 6.

Прислать комментарий     Решение

Задача 66653

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Дидин М.

Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$.
Прислать комментарий     Решение


Задача 53865

Темы:   [ Биссектриса угла ]
[ Подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1. Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 66754

Темы:   [ Биссектриса угла ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,11

К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .