|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружность k проходит через вершины B и C треугольника ABC (AB > AC) и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что A1P = A1Q. Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.
а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.
б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 142]
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
На сторонах AB, BC, CA правильного треугольника ABC
взяты точки P, Q, R так, что AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.
В треугольнике ABC угол A равен 60°, а биссектриса AM, медиана BN и высота CL пересекаются в одной точке. Найдите остальные углы треугольника.
Медиана, проведённая к гипотенузе прямоугольного треугольника, равна m и делит прямой угол в отношении 1 : 2. Найдите стороны треугольника.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 142] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|