ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Диаметр, хорды и секущие
>>
Диаметр, основные свойства
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 105]
Через точку пересечения двух окружностей проведите прямую, на которой окружности высекают хорды, сумма которых наибольшая. (Центры окружностей расположены по разные стороны от их общей хорды).
В треугольнике ABC известно, что AB = и BC = 2. Окружность проведена через точку B, через середину D отрезка BC, через точку E на отрезке AB и касается стороны AC. Найдите отношение, в котором эта окружность делит отрезок AB, если DE — диаметр этой окружности.
На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и ABC = ACD.
Через точку M, расположенную на диаметре окружности радиуса 4, проведена хорда AB, образующая с диаметром угол 30o. Через точку B проведена хорда BC, перпендикулярная данному диаметру. Найдите площадь треугольника ABC, если AM : MB = 2 : 3.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 105] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|