ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 105]      



Задача 108020

Темы:   [ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Квадрат ABCD и окружность $ \Omega$ пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL — дуги окружности). Докажите, что

а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;

б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Прислать комментарий     Решение


Задача 108224

Темы:   [ Диаметр, основные свойства ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 7,8,9

Дан параллелограмм ABCD  (AB < BC).  Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что  CP = CQ,  имеют общую точку, отличную от A.

Прислать комментарий     Решение

Задача 52479

Темы:   [ Диаметр, основные свойства ]
[ Наименьший или наибольший угол ]
[ Неравенства с углами ]
[ Принцип Дирихле (углы и длины) ]
[ Общие четырехугольники ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Прислать комментарий     Решение


Задача 54036

Темы:   [ Диаметр, основные свойства ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Точки D и E — середины сторон соответственно AB и BC треугольника ABC. Точка M лежит на стороне AC, причём ME > EC. Докажите, что MD < AD.

Прислать комментарий     Решение


Задача 52913

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники ]
Сложность: 4+
Классы: 8,9

Дана окружность с диаметром KL. Вторая окружность с центром в точке К пересекает первую окружность в точках M и N, а диаметр KL — в точке А. На дуге AN, не содержащей точки М, взята точка B, отличная от точек A и N. Луч LB пересекает первую окружность в точке C. Известно, что CN = a, CM = b. Найдите BC.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .