Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Вниз   Решение


Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

ВверхВниз   Решение


Высоты AA1, CC1 треугольника ABC пересекаются в точке H.  HA – точка симметричная H относительно A.  HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что  A'C' || AC.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 306]      



Задача 53780

Темы:   [ Признаки подобия ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольник MAN подобен треугольнику ABC.

Прислать комментарий     Решение

Задача 54005

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания.

Прислать комментарий     Решение


Задача 55396

Темы:   [ Признаки подобия ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A.
Докажите, что треугольники HB1C1 и ABC подобны.

Прислать комментарий     Решение

Задача 55398

Темы:   [ Признаки подобия ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты AA1, BB1 и CC1; B2 и C2 – середины высот BB1 и CC1.
Докажите, что треугольник A1B2C2 подобен треугольнику ABC.

Прислать комментарий     Решение

Задача 55473

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что  KX = XL.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .