ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись? Какую наименьшую ширину должна иметь бесконечная полоса бумаги,
из которой можно вырезать любой треугольник площадью 1?
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O. Высоты AA1, CC1 треугольника ABC пересекаются в точке H. HA – точка симметричная H относительно A. HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что A'C' || AC. |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 306]
На стороны BC и CD параллелограмма ABCD (или на их
продолжения) опущены перпендикуляры AM и AN.
Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания.
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A.
В треугольнике ABC проведены высоты AA1, BB1 и CC1; B2 и C2 – середины высот BB1 и CC1.
Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке