ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 306]
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.
Четырёхугольник ABCD вписан в окружность с центром O. Пусть P – точка пересечения его диагоналей, а точки M и N – середины сторон AB и CD соответственно. Окружность OPM вторично пересекает отрезки AP и BP в точках A1 и B1 соответственно, а окружность OPN вторично пересекает отрезки CP и DP в точках C1 и D1 соответственно. Докажите, что площади четырёхугольников AA1B1B и CC1D1D равны.
Для двух данных различных точек плоскости A и B найдите геометрическое место таких точек C, что треугольник ABC остроугольный, а его угол A - средний по величине. Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.
Две окружности касаются друг друга внутренним образом в точке A; AB — диаметр большей окружности. Хорда BK большей окружности касается меньшей окружности в точке C. Докажите, что AC является биссектрисой треугольника ABK.
В остроугольном треугольнике ABC из основания D высоты BD опущены перпендикуляры DM и DN на стороны AB и BC. Известно, что MN = a, BD = b. Найдите угол ABC.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке