Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 306]      



Задача 54132

Темы:   [ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.

Прислать комментарий     Решение


Задача 67113

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Пусть P – точка пересечения его диагоналей, а точки M и N – середины сторон AB и CD соответственно. Окружность OPM вторично пересекает отрезки AP и BP в точках A1 и B1 соответственно, а окружность OPN вторично пересекает отрезки CP и DP в точках C1 и D1 соответственно. Докажите, что площади четырёхугольников AA1B1B и CC1D1D равны.
Прислать комментарий     Решение


Задача 107983

Темы:   [ Метод ГМТ ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 7,8,9

Для двух данных различных точек плоскости A и B найдите геометрическое место таких точек C, что треугольник ABC остроугольный, а его угол A - средний по величине.

Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.

Прислать комментарий     Решение

Задача 53116

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Две окружности касаются друг друга внутренним образом в точке A; AB — диаметр большей окружности. Хорда BK большей окружности касается меньшей окружности в точке C. Докажите, что AC является биссектрисой треугольника ABK.

Прислать комментарий     Решение


Задача 54918

Темы:   [ Теорема синусов ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC из основания D высоты BD опущены перпендикуляры DM и DN на стороны AB и BC. Известно, что MN = a, BD = b. Найдите угол ABC.

Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .