ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 460]      



Задача 55122

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
[ Пятиугольники ]
Сложность: 4+
Классы: 8,9

Дан выпуклый пятиугольник ABCDE. Площадь каждого из треугольников ABC, BCD, CDE, DEA, EAB равна S. Найдите площадь данного пятиугольника.

Прислать комментарий     Решение


Задача 56756

Тема:   [ Медиана делит площадь пополам ]
Сложность: 5
Классы: 9

Шестиугольник ABCDEF вписан в окружность. Диагонали AD, BE и CF являются диаметрами этой окружности. Докажите, что площадь шестиугольника ABCDEF равна удвоенной площади треугольника ACE.
Прислать комментарий     Решение


Задача 56757

Тема:   [ Медиана делит площадь пополам ]
Сложность: 5
Классы: 9

Внутри выпуклого четырехугольника ABCD существует такая точка O, что площади треугольников  OAB, OBC, OCD и ODA равны. Докажите, что одна из диагоналей четырехугольника делит другую пополам.
Прислать комментарий     Решение


Задача 73686

Темы:   [ Отношения площадей (прочее) ]
[ Средняя линия трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5+
Классы: 8,9

Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 97893

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .