|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 464]
В некоторый угол B вписаны две непересекающиеся окружности. Окружность большего радиуса касается сторон этого угла в точках A и C, меньшего — в точках A1 и C1(точки A, A1 и C, C1 лежат на разных сторонах угла B). Прямая AC1 пересекает окружности большего и меньшего радиусов в точках E и F соответственно. Найдите отношение площадей треугольников ABC1 и A1BC1, если A1B = 2, EF = 1, а длина AE равна среднему арифметическому длин BC1 и EF.
Через произвольную точку, взятую внутри треугольника, проведены три прямые параллельные сторонам треугольника. При этом треугольник разбивается на три параллелограмма и три треугольника. Докажите, что произведение площадей параллелограммов в восемь раз больше произведения площадей треугольников.
В равнобедренном треугольнике ABC (AB = BC) медианы AD и
EC пересекаются в точке O. Отношение радиуса окружности,
вписанной в треугольник AOC, к радиусу окружности, вписанной в
четырёхугольник ODBE, равно
Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади
которых выражаются целыми числами.
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 464] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|