ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 208]      



Задача 64339

Темы:   [ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 10,11

Автор: Нилов Ф.

Внутри угла AOD проведены лучи OB и OC, причём  ∠AOB = ∠COD.  В углы AOB и COD вписаны непересекающиеся окружности.
Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.

Прислать комментарий     Решение

Задача 66265

Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9,10

Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

Прислать комментарий     Решение

Задача 115304

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку пересечения диагоналей трапеции ABCD параллельно основаниям BC и AD, пересекает сторону CD в точке K. Окружность проходит через вершины A и B трапеции, пересекает её основания BC и AD в точках X и Y соответственно и касается её стороны CD в точке K. Докажите, что прямая XY проходит через точку пересечения прямых AB и CD.

Прислать комментарий     Решение

Задача 54607

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетия помогает решить задачу ]
[ Подобные треугольники и гомотетия (построения) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки впишите квадрат в данный треугольник так, чтобы одна из сторон квадрата лежала на основании треугольника, а противоположные этой стороне вершины — на боковых сторонах.

Прислать комментарий     Решение


Задача 66686

Темы:   [ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ через центр $I$ вписанной окружности $w$ провели прямую, параллельную стороне $BC$, до пересечения с вписанной окружностью в точках $A_B$ и $A_C$ ($A_B$ находится в той же полуплоскости относительно прямой $AI$, что и точка $B$). После этого нашли точку пересечения прямых $BA_B$ и $CA_C$ и обозначили её через $A_1$. Аналогично построили точки $B_1$ и $C_1$. Докажите, что прямые $AA_1$, $BB_1$, $CC_1$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 208]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .