Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 222]
На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что CP : CA = 2CM : CB. Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.
На плоскости даны точки A и B и прямая l. По какой
траектории движется точка пересечения медиан треугольников ABC,
если точка C движется по прямой l?
Вершины K и N треугольника KMN перемещаются
по сторонам соответственно AB и AC угла BAC, а стороны
треугольника KMN соответственно параллельны трём данным прямым.
Найдите геометрическое место вершин M.
|
|
Сложность: 3+ Классы: 10,11
|
Внутри угла AOD проведены лучи OB и OC, причём ∠AOB = ∠COD. В углы AOB и COD вписаны непересекающиеся окружности.
Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.
|
|
Сложность: 3+ Классы: 8,9,10
|
Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что AM = MD. Докажите, что ∠PMB = ∠QMB.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 222]