ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 208]      



Задача 57037

Темы:   [ Гомотетия помогает решить задачу ]
[ Подобные фигуры ]
[ Симметрия помогает решить задачу ]
[ Четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10

Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.
Прислать комментарий     Решение


Задача 79272

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Итерации ]
[ Окружность, вписанная в угол ]
[ Лемма о вложенных отрезках ]
Сложность: 6-
Классы: 9,10,11

Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 108148

Темы:   [ Гомотетия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
Сложность: 6-
Классы: 9,10,11

Даны две окружности, касающиеся внутренним образом в точке N . Хорды BA и BC внешней окружности касаются внутренней в точках K и M соответственно. Пусть Q и P – середины дуг AB и BC , не содержащих точку N . Окружности, описанные около треугольников BQK и BPM , пересекаются в точке B1 . Докажите, что BPB1Q – параллелограмм.
Прислать комментарий     Решение


Задача 109670

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 6-
Классы: 9,10,11

Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 111867

Темы:   [ Гомотетия помогает решить задачу ]
[ Окружность Ферма-Аполлония ]
[ Гомотетичные окружности ]
[ Окружность, вписанная в угол ]
[ Описанные четырехугольники ]
[ Композиции гомотетий ]
Сложность: 6+
Классы: 9,10,11

Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 208]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .