ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 208]      



Задача 35090

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 9,10

Внутри квадрата ABCD взята точка M. Доказать, что точки пересечения медиан треугольников ABM, BCM, CDM, DAM образуют квадрат. Чему равна сторона этого квадрата, если сторона исходного квадрата равна 1?
Прислать комментарий     Решение


Задача 53579

Темы:   [ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Диагонали трапеции с основаниями AD и BC пересекаются в точке O.
Докажите, что окружности, описанные около треугольников AOD и BOC касаются друг друга.

Прислать комментарий     Решение

Задача 53580

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что  CP : CA = 2CM : CB.  Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.

Прислать комментарий     Решение

Задача 55766

Темы:   [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?

Прислать комментарий     Решение


Задача 55778

Темы:   [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Вершины K и N треугольника KMN перемещаются по сторонам соответственно AB и AC угла BAC, а стороны треугольника KMN соответственно параллельны трём данным прямым. Найдите геометрическое место вершин M.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 208]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .