Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 208]
Дан вписанный четырёхугольник
ABCD . Пусть
s1
— окружность, проходящая через точки
A и
B и касающаяся прямой
AC , а
s2
— окружность, проходящая через точки
C и
D и касающаяся
AC . Докажите, что прямые
AC ,
BD и вторая общая внутренняя касательная
к окружностям
s1
и
s2
проходят через
одну точку.
На окружности, касающейся сторон угла с вершиной
O ,
выбраны две диаметрально противоположные точки
A
и
B (отличные от точек касания). Касательная к
окружности в точке
B пересекает стороны угла в
точках
C и
D , а прямую
OA — в точке
E .
Докажите, что
BC=DE .
На стороне
BC остроугольного треугольника
ABC
постройте такую точку
M , что прямая, проходящая
через основания перпендикуляров, опущенных из
M
на прямые
AB и
AC , параллельна
BC .
На сторонах AB, BC и CA треугольника ABC построены во внешнюю сторону квадраты ABB1A2, BCC1B2 и CAA1C2.
Докажите, что перпендикуляры к отрезкам A1A2, B1B2 и C1C2, восставленные в их серединах, пересекаются в одной точке.
Вписанная окружность треугольника ABC касается стороны AC в
точке D, DM — диаметр окружности. Прямая BM пересекает
сторону AC в точке K. Докажите, что AK = DC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 208]