ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 64357

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

Окружность с центром I, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть Ia, Ib, Ic – центры вневписанных окружностей треугольника ABC, касающихся соответственно сторон BC, CA, AB. Отрезки IaB1 и IbA1 пересекаются в точке C2. Аналогично отрезки IbC1 и IcB1 пересекаются в точке A2, а отрезки IcA1 и IaC1 – в точке B2. Докажите, что I является центром описанной окружности треугольника A2B2C2.

Прислать комментарий     Решение

Задача 108248

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 5-
Классы: 8,9,10

В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.

Прислать комментарий     Решение

Задача 53201

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Из точки A на биссектрисе угла с вершиной L опущены перпендикуляры AK и AM на стороны угла. На отрезке KM взята точка P (K лежит между Q и L), а прямую ML – в точке S. Известно, что  ∠KLM = α,  KM = a,  QS = b.  Найдите KQ.

Прислать комментарий     Решение

Задача 64701

Темы:   [ Четырехугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

Прислать комментарий     Решение

Задача 64706

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .