ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 175]
Первая окружность с центром в точке A касается сторон угла KOL в точках K и L.
Вторая окружность с центром в точке B касается отрезка OK, луча LK
и продолжения стороны угла OL за точку O. Известно, что отношение радиуса
первой окружности к радиусу второй окружности равно
Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 5 : 13. Найдите отношение радиусов окружностей.
На рисунке изображена фигура ABCD .
Стороны AB , CD и AD этой фигуры– отрезки
(причём AB||CD и AD
В точках A и B пересечения двух окружностей касательные к этим окружностям взаимно перпендикулярны. Пусть M — произвольная точка на одной из окружностей, лежащая внутри другой окружности. Продолжим отрезки AM и BM до пересечения в точках X и Y с окружностью, содержащей M внутри себя. Докажите, что XY — диаметр этой окружности.
Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 175]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке