Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 184]
Катеты прямоугольного треугольника равны a и b. Найдите длину биссектрису, проведённой из вершины прямого угла.
Боковые рёбра треугольной пирамиды имеют одинаковую длину, а боковые грани —
одинаковую площадь. Докажите, что основание этой пирамиды — равнобедренный
треугольник.
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника делят его на четыре треугольника.
Оказалось, что сумма площадей двух противоположных (имеющих только общую вершину) треугольников равна сумме площадей двух других треугольников. Докажите, что одна из диагоналей делится другой диагональю пополам.
Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2.
|
|
Сложность: 3 Классы: 8,9,10
|
Какую наибольшую площадь может иметь треугольник, стороны которого
a,b,c заключены в следующих пределах:
0<a<= 1<= b<= 2<= c<= 3?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 184]