ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 54705

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 11, 13 и 12. Найдите медиану, проведённую к большей стороне.

Прислать комментарий     Решение


Задача 54706

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

В треугольнике две стороны равны 11 и 23, а медиана, проведённая к третьей, равна 10. Найдите третью сторону.

Прислать комментарий     Решение


Задача 55300

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Докажите, что отношение суммы квадратов медиан треугольника к сумме квадратов его сторон равно $ {\frac{3}{4}}$.

Прислать комментарий     Решение


Задача 54725

Темы:   [ Удвоение медианы ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Медиана AM треугольника ABC равна m и образует со сторонами AB и AC углы $ \alpha$ и $ \beta$ соответственно. Найдите эти стороны.

Прислать комментарий     Решение


Задача 54732

Темы:   [ Удвоение медианы ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 8,9

Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей, равна 5. Найдите площадь треугольника.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .