Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 67373

Темы:   [ Изогональное сопряжение ]
[ Точка Микеля ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

В треугольнике $ABC$ точки $P$ и $Q$ изогонально сопряжены. Прямая $PQ$ пересекает окружность $ABC$ в точке $X$. Прямая, симметричная $BC$ относительно $PQ$, пересекает прямую $AX$ в точке $E$. Докажите, что точки $A$, $P$, $Q$, $E$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67377

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Точка Микеля ]
[ Гомотетия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^*$ такова, что $BICA^*$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.
Прислать комментарий     Решение


Задача 65368

Темы:   [ Метод ГМТ ]
[ Вписанные четырехугольники (прочее) ]
[ Точка Микеля ]
Сложность: 4-
Классы: 9,10,11

Дан выпуклый четырёхугольник. Постройте циркулем и линейкой точку, проекции которой на прямые, содержащие его стороны, являются вершинами параллелограмма.

Прислать комментарий     Решение

Задача 52389

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Микеля ]
Сложность: 4
Классы: 8,9

Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Прислать комментарий     Решение


Задача 64892

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 3+
Классы: 10,11

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .