Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 1235]
|
|
|
Сложность: 3+ Классы: 7,8,9
|
От вулканостанции до вершины вулкана Стромболи надо идти 4 часа по дороге, а затем – 4 часа по тропинке. На вершине расположено два кратера. Первый
кратер 1 час извергается, потом 17 часов молчит, потом опять 1 час
извергается, и т.д. Второй кратер 1 час извергается, 9 часов молчит, 1 час
извергается, и т.д. Во время извержения первого кратера опасно идти и по
тропинке, и по дороге, а во время извержения второго опасна только тропинка.
Ваня увидел, что ровно в 12 часов оба кратера начали извергаться одновременно. Сможет ли он когда-нибудь подняться на вершину вулкана и вернуться назад, не рискуя жизнью?
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней?
|
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 1235]