Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 1221]
|
|
Сложность: 4 Классы: 7,8,9
|
На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?
Доказать, что число всех цифр в последовательности
1, 2, 3,..., 10
8 равно
числу всех нулей в последовательности
1, 2, 3,..., 10
9.
|
|
Сложность: 4 Классы: 9,10,11
|
Доказать, что число всех цифр в последовательности
1, 2, 3,..., 10
k равно
числу всех нулей в последовательности
1, 2, 3,..., 10
k + 1.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
|
|
Сложность: 4 Классы: 10,11
|
В автобусе без кондуктора едут 4
k пассажиров. У каждого из них есть только
монеты в 10, 15, 20 копеек. Доказать, что если общее число монет меньше
5
k, то пассажиры не смогут правильно расплатиться за проезд. Для числа монет
5
k построить пример, когда возможен правильный расчет.
Примечание. Проезд
в автобусе стоит 5 копеек.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 1221]