ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1221]      



Задача 107628

Темы:   [ Математическая логика (прочее) ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

К берегу Нила подошла компания из шести человек: три бедуина, каждый со своей женой. У берега находится лодка с вёслами, которая выдерживает только двух человек. Бедуин не может допустить, чтобы его жена находилась без него в обществе другого мужчины. Может ли вся компания переправиться на другой берег?
Прислать комментарий     Решение


Задача 107851

Темы:   [ Арифметические действия. Числовые тождества ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8,9

Является ли число  49 + 610 + 320  простым?

Прислать комментарий     Решение

Задача 108406

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
Прислать комментарий     Решение


Задача 109172

Темы:   [ Замена переменных (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Многочлены (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10

Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

Прислать комментарий     Решение

Задача 109900

Темы:   [ Задачи с ограничениями ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
Сложность: 3
Классы: 7,8,9

Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5.
Найдите число отличных билетов.

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .