Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1224]
|
|
Сложность: 3+ Классы: 9,10,11
|
Среди всех решений системы
x² + y² = 4,
z² + t² = 9,
xt + yz = 6
выберите те, для которых величина x + z принимает наибольшее значение.
|
|
Сложность: 3+ Классы: 9,10,11
|
На экране компьютера – число 141. Каждую секунду компьютер перемножает все цифры числа на экране, полученное произведение либо прибавляет к этому числу, либо вычитает из него, а результат появляется на экране вместо исходного числа. Появится ли еще когда-нибудь на экране число 141?
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите все трёхзначные числа, квадраты которых оканчиваются на 1001.
Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи?
|
|
Сложность: 3+ Классы: 8,9,10
|
Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1224]