Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1224]      



Задача 61284

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 9,10,11

Среди всех решений системы
    x² + y² = 4,
    z² + t² = 9,
    xt + yz = 6
выберите те, для которых величина  x + z  принимает наибольшее значение.

Прислать комментарий     Решение

Задача 64430

Темы:   [ Процессы и операции ]
[ Перебор случаев ]
[ Инварианты ]
[ Признаки делимости на 5 и 10 ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На экране компьютера – число 141. Каждую секунду компьютер перемножает все цифры числа на экране, полученное произведение либо прибавляет к этому числу, либо вычитает из него, а результат появляется на экране вместо исходного числа. Появится ли еще когда-нибудь на экране число 141?

Прислать комментарий     Решение

Задача 64493

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3+
Классы: 9,10,11

Найдите все трёхзначные числа, квадраты которых оканчиваются на 1001.

Прислать комментарий     Решение

Задача 64568

Темы:   [ Числовые последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи?

Прислать комментарий     Решение

Задача 64848

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .