Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 1235]
|
[Двоечники]
|
|
Сложность: 3 Классы: 8,9,10
|
В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)
|
|
|
Сложность: 3 Классы: 7,8,9
|
Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?
Дано натуральное число $N$.
Вера делает с ним следующие операции:
сначала прибавляет 3 до тех пор, пока получившееся число не станет
делиться на 5
(если изначально $N$ делится на 5, то ничего прибавлять
не надо).
Получившееся число Вера делит на 5.
Далее делает эти же
операции с новым числом, и так далее. Из каких чисел такими операциями
нельзя получить 1?
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 1235]