Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1224]      



Задача 78672

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Двухсотзначное число 89252525...2525 умножено на число 444x18y27 (x и y — неизвестные цифры). Оказалось, что 53-я цифра полученного числа (считая справа) есть 1, а 54-я — 0. Найти x и y.
Прислать комментарий     Решение


Задача 78818

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Необычные конструкции ]
Сложность: 4-
Классы: 8,9,10

В городе "Многообразие" живут n жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться.
Примечание. Если A — друг B, а B — друг C, то A — также друг C. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.
Прислать комментарий     Решение


Задача 86121

Темы:   [ Свойства симметрий и осей симметрии ]
[ Процессы и операции ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Прислать комментарий     Решение


Задача 88304

Темы:   [ Взвешивания ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8

Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?
Прислать комментарий     Решение


Задача 107798

Темы:   [ Взвешивания ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.
Прислать комментарий     Решение


Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .