Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 1224]      



Задача 78548

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 9,10,11

При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет среди присутствующих не более  n – 1  врага.
Доказать, что Мерлин, советник Артура, может так рассадить рыцарей за круглым столом, что ни один из них не будет сидеть рядом со своим врагом.

Прислать комментарий     Решение

Задача 78570

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные $ {\frac{1}{1965}}$ части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.
Прислать комментарий     Решение


Задача 78631

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Рассматриваются всевозможные n-значные числа, составленные из цифр 1, 2 и 3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так, что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются разные цифры. Доказать, что найдется n-значное число, в записи которого участвует лишь одна единица и к которому приписывается единица.
Прислать комментарий     Решение


Задача 78676

Темы:   [ Композиции поворотов ]
[ Процессы и операции ]
[ Круг, сектор, сегмент и проч. ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5-
Классы: 8,9,10

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.
Прислать комментарий     Решение


Задача 79328

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

Прислать комментарий     Решение

Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .