Страница:
<< 170 171 172 173
174 175 176 >> [Всего задач: 1221]
Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.
a, b, c – натуральные числа и  1/a + 1/b + 1/c < 1. Докажите, что  1/a + 1/b + 1/c ≤ 41/42.
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–".
Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
|
|
Сложность: 3+ Классы: 7,8,9
|
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.
Найдите максимальное значение выражения |...||x1 – x2| – x3| – ... – x1990|, где x1, x2, ..., x1990 – различные натуральные числа от 1 до 1990.
Страница:
<< 170 171 172 173
174 175 176 >> [Всего задач: 1221]