ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1235]      



Задача 32120

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–".

Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Прислать комментарий     Решение

Задача 32803

Темы:   [ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

Прислать комментарий     Решение

Задача 34849

Темы:   [ Модуль числа ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Найдите максимальное значение выражения  |...||x1x2| – x3| – ... – x1990|,  где x1, x2, ..., x1990 – различные натуральные числа от 1 до 1990.

Прислать комментарий     Решение

Задача 35149

Темы:   [ Неравенства с площадями ]
[ Принцип Дирихле (площадь и объем) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10

В квадрате со стороной 1 расположено 100 фигур, суммарная площадь которых больше 99. Докажите, что в квадрате найдется точка, принадлежащая всем этим фигурам.
Прислать комментарий     Решение


Задача 35498

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Можно ли все натуральные числа разбить на пары так, чтобы сумма чисел в каждой паре была квадратом целого числа?
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .