Страница:
<< 172 173 174 175
176 177 178 >> [Всего задач: 1221]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что для любого простого числа p > 2 числитель дроби m/n = 1/1 + 1/2 + ... + 1/p–1 делится на p.
|
|
Сложность: 3+ Классы: 8,9,10
|
Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49 камней, а в третьей – 5 камней. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли
получить 105 кучек по одному камню в каждой?
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все шестизначные числа, которые увеличиваются в целое число раз при перенесении последней цифры в начало.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец
четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
а) в конце у всех гномов молока оказалось поровну?
б) в конце у всех гномов оказалось молока столько, сколько было в
начале?
На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?
Страница:
<< 172 173 174 175
176 177 178 >> [Всего задач: 1221]