Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 694]
|
|
Сложность: 5 Классы: 10,11
|
Окружность с центром
I , вписанная в грань
ABC треугольной пирамиды
SABC ,
касается отрезков
AB ,
BC ,
CA в точках
D ,
E ,
F
соответственно. На отрезках
SA ,
SB ,
SC отмечены соответственно точки
A' ,
B' ,
C' так, что
AA'=AD ,
BB'=BE ,
CC'=CF ;
S' –
точка на описанной сфере пирамиды, диаметрально противоположная точке
S . Известно, что
SI является высотой пирамиды. Докажите, что
точка
S' равноудалена от точек
A' ,
B' ,
C' .
|
|
Сложность: 5+ Классы: 10,11
|
В треугольной пирамиде
ABCD все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках
ABC ,
ABD ,
ACD
лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер
AB ,
AC ,
AD .
|
|
Сложность: 5+ Классы: 10,11
|
Дана треугольная пирамида
ABCD . Сфера
S1 , проходящая через
точки
A ,
B ,
C , пересекает ребра
AD ,
BD ,
CD в точках
K ,
L ,
M соответственно;
сфера
S2 , проходящая через точки
A ,
B ,
D ,
пересекает ребра
AC ,
BC ,
DC в точках
P ,
Q ,
M соответственно.
Оказалось, что
KL|| PQ .
Докажите, что биссектрисы плоских углов
KMQ и
LMP совпадают.
|
|
Сложность: 2+ Классы: 10,11
|
В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
, 10, 6 и 40.
|
|
Сложность: 3- Классы: 10,11
|
Все грани треугольной пирамиды – прямоугольные треугольники.
Наибольшее ребро равно a, а противоположное ребро равно b.
Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.
Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 694]