Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 53]      



Задача 87637

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Тетраэдр (прочее) ]
Сложность: 4
Классы: 10,11

Через точку пространства проведены четыре плоскости, никакие три из которых не имеют общей прямой. На сколько частей делят пространство эти плоскости? Как называются образовавшиеся части пространства?
Прислать комментарий     Решение


Задача 87639

Тема:   [ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

В пространстве взяты точки A , B , C и D , для которых AD = BD = CD , ADB = 90o , ADC = 50o , BDC = 140o . Найдите углы треугольника ABC .
Прислать комментарий     Решение


Задача 108847

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9

Теорема косинусов для трёхгранного угла. Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos A = , cos B = , cos C = .

Прислать комментарий     Решение

Задача 109287

Темы:   [ Неравенства с трехгранными углами ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Верно ли, что у любого трёхранного угла есть сечение, являющееся правильным треугольником?
Прислать комментарий     Решение


Задача 109911

Темы:   [ Неравенства с трехгранными углами ]
[ Четырехугольная пирамида ]
[ Тетраэдр (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 10,11

Существуют ли выпуклая n -угольная ( n 4 ) и треугольная пирамиды такие, что четыре трехгранных угла n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .