|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что: а) A1M/MA = (A1P/PA) + (A1Q/QA); б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC). Решите задачу 13.44, используя свойства центра масс. |
Страница: << 1 2 3 4 [Всего задач: 17]
Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?
Страница: << 1 2 3 4 [Всего задач: 17] |
||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|