Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Вниз   Решение


а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку O в данную точку O', а данный базис векторов  e1, e2 — в данный базис  e1', e2'.
б) Даны два треугольника ABC и A1B1C1. Докажите, что существует единственное аффинное преобразование, переводящее точку A в A1, B — в B1, C — в C1.
в) Даны два параллелограмма. Докажите, что существует единственное аффинное преобразование, которое один из них переводит в другой.

ВверхВниз   Решение


Пусть OABCDEF – шестигранная пирамида с основанием ABCDEF, описанная около сферы ω. Плоскость, проходящая через точки касания ω с гранями OFA, OAB и ABCDEF, пересекает ребро OA в точке A1; аналогично определяются точки B1, C1, D1, E1 и F1. Пусть , m и n – прямые A1D1, B1E1 и C1F1 соответственно. Оказалось, что и m лежат в одной плоскости, m и n также лежат в одной плоскости. Докажите, что и n лежат в одной плоскости.

ВверхВниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

Вверх   Решение

Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



Задача 110958

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде SABCD с высотой, не меньшей h , расположена полусфера радиуса r= так, что её касаются все боковые грани пирамиды, а центр полусферы лежит на основании ABC пирамиды. Найдите наименьшее возможное значение объёма пирамиды.
Прислать комментарий     Решение


Задача 110989

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильную треугольную пирамиду вписаны два шара. Первый шар радиуса r касается основания пирамиды и её боковых граней. Второй шар касается первого шара внешним образом и также боковых граней пирамиды. Найдите сумму объёмов шаров, если объём пирамиды является минимально возможным.
Прислать комментарий     Решение


Задача 110990

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110991

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых граней, а второй шар касается первого шара внешним образом и боковых рёбер пирамиды. Радиус первого шара равен r . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110992

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и также боковых рёбер пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .