Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 47]
|
|
Сложность: 3+ Классы: 10,11
|
Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?
|
|
Сложность: 3+ Классы: 10,11
|
Доказать, что не существует многогранника, имеющего 7 рёбер.
|
|
Сложность: 3+ Классы: 10,11
|
Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
а) равные многоугольники;
б) правильные многоугольники?
|
|
Сложность: 4- Классы: 10,11
|
Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?
|
|
Сложность: 4- Классы: 10,11
|
Правильный тетраэдр обладает таким свойством: для каждых двух его вершин найдётся третья вершина, образующая с этими двумя правильный треугольник. Существуют ли другие многогранники, обладающие этим свойством?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 47]