ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

Вниз   Решение


Пусть O — точка пересечения диагоналей четырехугольника ABCD, а E, F — точки пересечения продолжений сторон AB и CD, BC и AD соответственно. Прямая EO пересекает стороны AD и BC в точках K и L, а прямая FO пересекает стороны AB и CD в точках M и N. Докажите, что точка X пересечения прямых KN и LM лежит на прямой EF.

ВверхВниз   Решение


Натуральные числа a, b, c, d таковы, что ad – bc > 1.  Докажите, что хотя бы одно из чисел a, b, c, d не делится на  ad – bc.

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?

Прислать комментарий     Решение

Задача 109149

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует многогранника, имеющего 7 рёбер.
Прислать комментарий     Решение


Задача 116823

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Сферы (прочее) ]
[ Правильные многоугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 10,11

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
   а) равные многоугольники;
   б) правильные многоугольники?

Прислать комментарий     Решение

Задача 64340

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Площадь и ортогональная проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4-
Классы: 10,11

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Прислать комментарий     Решение

Задача 64821

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильная пирамида ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Правильный тетраэдр обладает таким свойством: для каждых двух его вершин найдётся третья вершина, образующая с этими двумя правильный треугольник. Существуют ли другие многогранники, обладающие этим свойством?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .