Страница:
<< 7 8 9 10 11 12 13 [Всего задач: 63]
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым
числом сторон.
|
|
|
Сложность: 4- Классы: 10,11
|
Положительные числа A, B, C и D таковы, что система уравнений
x² + y² = A,
|x| + |y| = B
имеет m решений, а система уравнений
x² + y² + z² = C,
|x| + |y| + |z| = D
имеет n решений. Известно, что m > n > 1. Найдите m и n.
Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на
противоположных гранях кубика равна 7. Дана шахматная доска 50×50
клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого
нижнего угла доски в правый верхний. При перекатывании он каждый раз
переваливается через свое ребро на соседнюю клетку, при этом разрешается
двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой
из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку.
Какое наибольшее значение может принимать сумма всех написанных чисел? Какое
наименьшее значение она может принимать?
Страница:
<< 7 8 9 10 11 12 13 [Всего задач: 63]