Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]
Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние
между прямыми A1D и D1C и постройте их общий перпендикуляр.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k. Найти угол между прямыми А3В3 и А4В4.
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
|
|
Сложность: 5 Классы: 10,11
|
Для углов α , β , γ справедливо равенство
sinα + sinβ + sinγ
2 .
Докажите, что
cosα + cosβ + cosγ 
.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]