ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 137]      



Задача 35644

Темы:   [ Счетные и несчетные подмножества ]
[ Покрытия ]
Сложность: 4
Классы: 10,11

Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.
Прислать комментарий     Решение


Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а) $ \sqrt[3]{17}$;     д) cos 10o;    
б) $ \sqrt{2}$ + $ \sqrt{3}$;     е) tg 10o;    
в) $ \sqrt{2}$ + $ \sqrt{3}$ + $ \sqrt{5}$;     ж) sin 1o;    
г) $ \sqrt[3]{3}$ - $ \sqrt{2}$; з) log23.

Прислать комментарий     Решение

Задача 64767

Темы:   [ Рациональные и иррациональные числа ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в αk рублей при каждом натуральном k. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

Прислать комментарий     Решение

Задача 78051

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 9,10

Числа [a], [2a], ..., [Na] различны между собой, и числа $ \left[\vphantom{\frac{1}{a}}\right.$$ {\frac{1}{a}}$$ \left.\vphantom{\frac{1}{a}}\right]$, $ \left[\vphantom{\frac{2}{a}}\right.$$ {\frac{2}{a}}$$ \left.\vphantom{\frac{2}{a}}\right]$, ..., $ \left[\vphantom{\frac{M}{a}}\right.$$ {\frac{M}{a}}$$ \left.\vphantom{\frac{M}{a}}\right]$ тоже различны между собой. Найти все такие a.
Прислать комментарий     Решение


Задача 97790

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Подсчет двумя способами ]
[ Показательные функции и логарифмы (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 10,11

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 137]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .