ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



Задача 67053

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство  $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$.  ([$x$] – целая часть числа $x$.)

Прислать комментарий     Решение

Задача 78051

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 9,10

Числа [a], [2a], ..., [Na] различны между собой, и числа $ \left[\vphantom{\frac{1}{a}}\right.$$ {\frac{1}{a}}$$ \left.\vphantom{\frac{1}{a}}\right]$, $ \left[\vphantom{\frac{2}{a}}\right.$$ {\frac{2}{a}}$$ \left.\vphantom{\frac{2}{a}}\right]$, ..., $ \left[\vphantom{\frac{M}{a}}\right.$$ {\frac{M}{a}}$$ \left.\vphantom{\frac{M}{a}}\right]$ тоже различны между собой. Найти все такие a.
Прислать комментарий     Решение


Задача 97790

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Подсчет двумя способами ]
[ Показательные функции и логарифмы (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 10,11

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

Прислать комментарий     Решение

Задача 109685

Темы:   [ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

Прислать комментарий     Решение

Задача 109780

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
[ Теория множеств (прочее) ]
Сложность: 4
Классы: 9,10,11

Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .