Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 151]
Доказать, что если несократимая рациональная дробь p/q является корнем многочлена P(x) с целыми коэффициентами, то P(x) = (qx – p)Q(x), где многочлен Q(x) также имеет целые коэффициенты.
|
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что число рационально тогда и только тогда, когда оно представляется
конечной или периодической десятичной дробью.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Один из корней уравнения x² + ax + b = 0 равен 1 +
. Найдите a и b, если известно, что они рациональны.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 151]