Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 75]
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.
|
|
Сложность: 3+ Классы: 9,10,11
|
У чисел 1000², 1001², 1002², ... отбрасывают по две последние цифры. Сколько первых членов полученной последовательности образуют арифметическую прогрессию?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
а) Могло ли случиться, что до a5 последовательность убывает (a1 > a2 > a3 > a4 > a5), а начиная с a5 – возрастает (a5 < a6 < a7 < ...)?
б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?
|
|
Сложность: 3+ Классы: 8,9,10
|
Последовательность чисел a1, a2, ... задана условиями a1 = 1, a2 = 143 и при всех n ≥ 2.
Докажите, что все члены последовательности – целые числа.
|
|
Сложность: 3+ Классы: 10,11
|
Вавилонский алгоритм вычисления
.
Последовательность чисел {
xn} задана
условиями:
x1 = 1,
xn + 1 =
xn +
(
n 1).
Докажите, что
xn =
.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 75]