Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 75]
|
|
Сложность: 4 Классы: 10,11
|
Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$.
a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Найти а) a100; б) a1983.
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5;
an+1 = [ an], если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.
|
|
Сложность: 4+ Классы: 9,10
|
Петя хочет выписать все возможные последовательности из 100 натуральных чисел,
в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать?
Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается число 4 или 5, а любые два соседних члена различаются не больше, чем на 2. Сколько последовательностей ему придётся выписать?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 75]