ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 519]      



Задача 108164

Темы:   [ Перегруппировка площадей ]
[ Вспомогательные подобные треугольники ]
[ Площадь параллелограмма ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

Прислать комментарий     Решение

Задача 109022

Темы:   [ Площадь трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10

Трапеция, основания которой равны a и b  (a > b),  рассечена прямой, параллельной основаниям, на две трапеции, площади которых относятся как  k : p.  Найти длину общей стороны образовавшихся трапеций.

Прислать комментарий     Решение

Задача 109031

Темы:   [ Неравенства с площадями ]
[ Вспомогательные подобные треугольники ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника.

Прислать комментарий     Решение

Задача 109081

Темы:   [ Свойства сечений ]
[ Вспомогательные подобные треугольники ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Плоскость проходит через середины рёбер AB и CD пирамиды ABCD и делит ребро BD в отношении  1 : 3.
В каком отношении эта плоскость делит ребро AC?

Прислать комментарий     Решение

Задача 109082

Темы:   [ Свойства сечений ]
[ Вспомогательные подобные треугольники ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Плоскость проходит через середины рёбер AB и AC пирамиды ABCD и делит ребро BD в отношении  1 : 3.
В каком отношении эта плоскость делит ребро CD?

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 519]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .