Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?

Вниз   Решение


Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC .

Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]      



Задача 111401

Темы:   [ Правильный тетраэдр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 10,11

Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.

Прислать комментарий     Решение

Задача 115313

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

В трапеции ABCD с основаниями AD и BC на стороне AB взята такая точка E, что  AE : BE = AD : BC.  Точка H – проекция точки D на прямую CE.
Докажите, что  AH = AD.

Прислать комментарий     Решение

Задача 115693

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что  ∠AXY = 2∠C,  ∠CYX = 2∠A.
Докажите неравенство  

Прислать комментарий     Решение

Задача 66786

Темы:   [ Описанные четырехугольники ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
Прислать комментарий     Решение


Задача 55240

Темы:   [ Неравенства с углами ]
[ Вспомогательные подобные треугольники ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4+
Классы: 8,9

На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .